
International Journal of Speech Technology
 

Performance analysis of short length Low density parity check codes
--Manuscript Draft--

 
Manuscript Number: IJST-D-20-00116

Full Title: Performance analysis of short length Low density parity check codes

Article Type: Manuscript

Keywords: LPDC Encoder, PEG, SPEC, EXIT chart

Corresponding Author: ANAND ANBALAGAN, Ph.D
St.Martin's Engineering College,Secunderabad
Madurai, N/A INDIA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: St.Martin's Engineering College,Secunderabad

Corresponding Author's Secondary
Institution:

First Author: ANAND ANBALAGAN, Ph.D

First Author Secondary Information:

Order of Authors: ANAND ANBALAGAN, Ph.D

SIVAKANNAN SUBRAMANI, Ph.D.,

C Kamalanathan

Sunita Panda

Order of Authors Secondary Information:

Funding Information:

Abstract: Outstanding bit error rate LDPC design in waterfall region and error floor region is one
of the challenging tasks for the past decade. This chapter, focuses on the design of
LDPC encoder with the low error floor and waterfall region of BER with minimum
trapping set. Scheduled Progressive Edge-Growth (SPEG) LDPC encoder is used, and
the simulation result of density evolution and exit chart are giving the better
convergence of LDPC encoder. BER performance in error floor can controlled by
minimum trapping set and waterfall region controlled by scheduled PEG LDPC
encoder (1000, 500) with code length (n) is less than 600. The girth of the SPEG
encoder is 8. SPEG with minimum trapping set will perform well for short length code
also and it converges faster than the other PEG encoder.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Performance analysis of short length Low density parity 

check codes 

 

Dr.Anand Anbalagan1,  

1Department of ECE, 

 St.Martin’s Engineering College,  

Secundrabad, India 

anandtce@gmail.com 

Sivakanann Subramani2,  

2Department of ECE,  

MVJ College of Engineering,  

Bangalore,India 

sivakannan87@gmail.com 

Kamalanathan C3 

3Department of ECE, 

GITAM School of Technology,  

GITAM University Bangalore,India 
,kamalanadhan@gmail.com 

Sunita Panda4 

4Department of ECE, 

GITAM School of Technology,  

GITAM University Bangalore,India 
sunita.panda@gitam.edu 

 

Title Page containing all the Author Details

mailto:anandtce@gmail.com
mailto:sivakannan87@gmail.com
mailto:kamalanadhan@gmail.com
mailto:sunita.panda@gitam.edu


Performance analysis of short length Low density parity 

check codes 

 

Abstract 

 Outstanding bit error rate LDPC design in waterfall region and error floor region 

is one of the challenging tasks for the past decade. This chapter, focuses on the design of 

LDPC encoder with the low error floor and waterfall region of BER with minimum trapping 

set. Scheduled Progressive Edge-Growth (SPEG) LDPC encoder is used, and the simulation 

result of density evolution and exit chart are giving the better convergence of LDPC encoder. 

BER performance in error floor can controlled by minimum trapping set and waterfall region 

controlled by scheduled PEG LDPC encoder  (1000, 500) with code length (n) is less than 

600. The girth of the SPEG encoder is 8. SPEG with minimum trapping set will perform well 

for short length code also and it converges faster than the other PEG encoder.  

Keywords: LPDC Encoder, PEG, SPEC, EXIT chart 

 

 

INTRODUCTION 

 LDPC codes are celebrated for its Shannon capacity and easy implementation in 

ASIC and FPGA. Formerly, the BER performance of LDPC code depended only on the 

decoding mechanism. But now the implementation of the proper encoder will increase the 

performance of BER in both error floor and waterfall region. Most of the researches 

(Richardson 2003, Tao Tian, Chris Jones et al. 2010, Tao Tian et al 2010, Zheng et al. 2010) 

have focused only on error floor performance. LDPC ensembles design has lot of techniques 

such as Quasi-Cyclic (QC) LPDC, Prototype, and PEG with regular and irregular 

constructions. QCLDPC construction with easy implementation with a shift register and its 

permutation matrix (Z) plays a vital role in the design of QCLDPC (Wang et al. 2013). 

Prototype and lifting prototype mechanism yields good ensemble construction with fast 

convergence even if better in irregular LDPC. But PEG technique has a lot of flexibility of 

designing of ensembles in regular and irregular with high girth. If the girth of the LDPC is 

maximum, then its stopping set size will decrease (Gholami&Esmaeili 2012). Hence PEG 

with large girth will eliminate the problem of stopping set in the tanner graph. In this research 

work will enrich the ensemble design of PEG LDPC is enhanced in two ways. (i) Scheduled 

PEG directed towards fast convergence (ii) PEG mechanism growth in the fashion of 

minimum trapping set. 

 This paper is organized as follows: In section 1, basic construction about PEG and 

then section 2 describes the modification of PEG algorithm in a different way. Section 3 

describes the minimal trapping set.  Section 4 explains the proposed SPEG with minimum 

trapping set algorithm and section 5 and 6 are dedicated to optimization of degree of 

distribution using density evolution and EXIT chart analysis, respectively. Section 7 

discusses the simulation results in AWGN with various PEG LDPC constructions and then 

conclusion. 
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1.PEG LDPC ENSEMBLE CONSTRUCTION 

 LDPC ensembles can be represented by tanner graph edges and nodes as (V, C, 

E), where V= {𝑣1, 𝑣2, . . 𝑣𝑛} is the set of variable nodes(VN), C= {𝑐1, 𝑐2, . . 𝑐𝑛} is the set of 

check nodes (CN) and E⊆ 𝑉𝑋𝐶 is the set of edges. The edges are placed in the graph one by 

one, by processing one VN socket at a time. At the end of the process, a bi-section is 

established between the VN sockets and CN (check node) sockets. This class of algorithms is 

known as the class of progressive edge-growth (PEG) algorithms. The PEG algorithm is 

suited to construct the unstructured finite length LDPC code with large girth. (Khazraie et al. 

2012) 

 The motivation behind the PEG algorithm is to tackle the problem of increasing 

the girth of a Tanner graph by maximizing the local girth of a VN whenever a new edge is 

drawn from this VN toward the CN set. The PEG algorithm works for any number of VNs 

and CNs, and for any VN degree distribution. Therefore, it is extremely flexible. For an 

irregular VN degree profile, ordering the VNs according to their degrees from the smallest to 

the largest and processing the VNs according to this ordering is in general beneficial. 

 PEG algorithm node by node manner is summarized as follows 

(DejanVukobratovi&VojinSenk 2009) 

Algorithm: 1 

For j= 1 to n do 

   For k=1 to 𝑑𝑣𝑗 do 

Determine𝑪𝒗𝒋 ∈ 𝐸 

𝐶𝑖 ← {𝑪𝒗𝒋| mindeg} 

Add edge (𝑉𝑗,𝐶𝑗) to E 

End for 

   End for 

 𝐷𝑠= {𝑑𝑣1,𝑑𝑣2,……𝑑𝑣𝑛|𝑑𝑣1 ≤ 𝑑𝑣1 ≤ ⋯ ≤ 𝑑𝑠𝑛}, 𝐷𝑠 the target sequence of the 

variable node degrees is sorted in non-decreasing order. It denotes that 𝑪𝒗𝒋the set of check 

node, whose distance 𝑉𝑗 is maximum. If 𝐸𝒗𝒋 ≠ ∅, 𝑪𝒗𝒋it can be determined by expanding a sub 

graph from variable node 𝑉𝑗 up to maximal length. Finally, it is observed that the check node 

degree distribution of the constructed Tanner graph is almost uniform. Finite length LDPC 

codes are characterized by a good compromise between waterfall and error floor 

performances. But finite length codes are not providing good error floor. Hence some 

modifications are made in PEG algorithm for good error floor without sacrificing waterfall 

region.  

 Hence the improvisation of PEG done by (i) degree-by-degree manner (ii) 

minimizing the number cycles created (Aditya Ramamoorthy& Richard Wesel 2004); 
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(DejanVukobratovi´C&VojinSenk 2009) (iii) minimizing the approximate cycle 

extrinsic(ACE) message degree (iv) PEG produce LDPC code graphs with significantly 

larger minimal stopping set compared with random construction algorithm. Comparing the 

method (iii) and (iv) the minimal trapping set, performs well in error floor region. But finding 

trapping set from Tanner graph is NP-hard problem. The modified PEG by ACE (Xiao 

&Banihashemi 2004) and degree-by-degree with scheduling method (Lam Pham Sy et al. 

2011) will be discussed in section 2 

2.MODIFIED PEG ALGORITHM 

 One of the key metrics that have been successfully adopted to improve the 

original PEG is referred as the approximated cycle extrinsic message degree (ACE) of cycles 

of Tanner graph. The edges of VN 𝑉𝑗are indexed from 0 to 𝑑𝑣𝑗 -1, and the Kth edge of VN 𝑉𝑗 

is denoted by 𝒆𝑉𝑗
𝑘  where k ∈{0,….𝑑𝑣𝑗 -1}. Moreover, the neighborhood of VN 𝑉𝑗 within the 

depth l is denoted by, 𝑵𝑉𝑗
𝑙 . Denoting by 𝒑𝑉𝑗,𝑐

𝑙  is the set of paths of length 2 l+1 from 𝑉𝑗 to c  

∈ 𝑪𝑉𝑗
𝑙  

Algorithm:2 Modified PEG with ACE 

1: If |𝑵𝑉𝑗
𝑙𝑚𝑎𝑥+1| = |𝑵𝑉𝑗

𝑙𝑚𝑎𝑥| < 𝑚 then 

2: set𝒆𝑉𝑗
𝑘 =(𝐶𝑖 , 𝑉𝑗) 

End  

Else  

3: determine the ACE of  𝒑𝑉𝑗,𝑐
𝑙𝑚𝑎𝑥+1 

Do: 2 until lowest degree of 𝒑𝑉𝑗,𝑐
𝑙𝑚𝑎𝑥+1 

End  

 The above PEG with ACE algorithm gives better error floor performance by 

giving a penalty of waterfall region. Therefore, scheduled PEG degree-by-degree (Sharon 

&Litsyn 2008) (DejanVukobratovi´C&VojinSenk 2009) is formed to overcome the tradeoff 

between waterfall region and error floor region. 

 Scheduled Progressive Edge growth algorithm is proposed to improve the average 

inefficiency (�̅�) of irregular LDPC. The ensemble of irregular LDPC can be represented by 

fraction on node and edge. Let δ𝑑 and γ𝑑 are the fraction on variable node and check node of 

degree d. Let also λ𝑑 and ρ𝑑 are the fraction of edges connected to variable and check node 

of degree d.  𝜋 is the random permutation matrix. 

 𝜆(𝑥) = ∑ λ𝑑𝑑 𝑥𝑑−1,ρ(𝑥) = ∑ ρ𝑑𝑑 𝑥𝑑−1              (1) 

 

 δ(𝑥) = ∑ δ𝑑𝑑 𝑥𝑑, 𝜆(𝑥) = ∑ γ𝑑𝑑 𝑥𝑑                        (2) 
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 Code rate (r) =1-
∫ ρ(𝑥)𝑑𝑥

1
0

∫ 𝜆 (𝑥)𝑑𝑥
1

0

                (3) 

 And coding inefficiency 𝜇(𝜋)=
𝐾𝜋

𝐾
               (4) 

 It is assumed that the girth of the graph goes infinity with the codeword n, which 

actually happens for almost all the codes of irregular ensemble E(𝜆, ρ). It follows the 

decoding efficiency, which can be expressed as 
1−𝑝𝑒

𝑟
 also goes to threshold value:  

 𝜇𝑡ℎ=
1−𝑝𝑡ℎ

𝑟
  which will be referred as inefficiency threshold. The density evolution 

of the irregular LDPC can be found by tracking the threshold with the ensemble E (𝜆, ρ). We 

consider the collection of discrete variable node subset 𝒗𝑑
(𝑡)

⊆ V is indexed by  

 t ∈ {1, 2,….T} and d ∈ {1,2 … 𝑑𝑚𝑎𝑥} 

 𝒗𝑑
(𝑡)

⊆  𝑉𝑑                  (5) 

 V=⋃ ⋃ 𝒗𝑑
(𝑡)𝑇

𝑡=1
𝑑𝑚𝑎𝑥
𝑑=1        (6) 

and 𝒏𝑑
(𝑡)

 the number of variable node in 𝒗𝑑
(𝑡)

 

 𝑛 = ∑ ∑ 𝒏𝑑
(𝑡)𝑇

𝑡=0
𝑑𝑚𝑎𝑥
𝑑=1                 (7) 
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Algorithm: 3 Scheduled PEG 

For t=1 to T do  

    For d=1 to 𝑑𝑚𝑎𝑥 do 

        For k=1 to d do 

For 𝑉𝑗 ∈ 𝒗𝑑
(𝑡)

 do 

Determine𝑪𝒗𝒋 ∈ 𝐸 

𝐶𝑖 ← {𝑪𝒗𝒋| mindeg} 

Add edge (𝑉𝑗,𝐶𝑗) to E 

      End for 

      End for 

  End for 

End for 

 Different choice of scheduling subset {𝒗𝑑
(𝑡)

} might lead to codes with different 

performance. Even though the set optimized there should be the penalty for waterfall region 

at some extent. SPEG providing good performance with error floor and waterfall region 

compared with ACE, but exact calculation of scheduling subset is random distribution, so 

that, it focused on the scheduled PEG with avoiding minimal trapping set which yields good 

result in both domain. Next section 3 the trapping set calculation under AWGN channel will 

be discussed 

3. MINIMAL TRAPPING SET OF IRREGULAR CODE 

 A trapping set for an iterative decoding algorithm is defined as a non-empty set of 

variable nodes that are not eventually correct by the decoder. (Nguyen et al. 2012). A 

trapping set is called an T(a,b) trapping set if it contains variable nodes and the subgraph 

induced by these nodes has b odd degree check nodes. T (a,b) is the subset of V, the set of 

variable nodes in T are connected to T at least twice .  

 The size of stopping set T is defined as the cardinality of T. From the Figure 1 set 

{𝑣2, 𝑣6, 𝑉9} is a stopping set. It shown in Figure 1 that the set of erasures are remaining when 

the iterative erasure decoding algorithm stops until the erroneous value is equal to the unique 

maximum stopping set. 
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Figure 1 An irregular LDPC code 

𝑑𝑐(i,j)={
|𝑖 − 𝑗|𝑓𝑜𝑟 𝑖, 𝑗 ≤ 𝑛2 + 1

∞ 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (8) 

𝑛2 is the number of degree-2 variable nodes. 

 In order to identify the non-selectable CNs a subgraph from VN 𝑉𝑗should be 

spread up to depth 2 (Richter & Hof 2006). The modification on algorithm 1 with minimal 

trapping set is reinforced by further condition of non-selectability on the surviving CNs in 

𝑵𝑉𝑗
𝑙𝑚𝑎𝑥. By satisfying the Equation (8) it can build PEG avoidance of even small trapping set. 

This will provide great performance in error floor region. Next, section 4 will give the notion 

of proposed work performance in waterfall region and error floor region. 

4. PROPOSED SPEG WITH AVOIDANCE OF SMALL  TRAPPING SET 

 Algorithm 3 and 4 gives the idea of SPEG and small trapping set condition. In 

SPEG the scheduled parameter 𝒗𝑑
(𝑡)

 calculation is trial and error problem. Then it is 

optimized by differential evolution method. But still calculation of scheduling parameter is an 

exhaustive search, due to that the performance of error floor falls with some extent, hence 

this can be overcome by adapting the idea of avoidance of minimal trapping set with SPEG 

which will resulting outstanding performance in error floor region without the sacrificing of 

waterfall region. This notion can be used for regular and irregular PEG LPDC construction. 

PEG with minimal trapping set algorithm is applicable for BSC and AWGN also. Hence the 

proposed work gives the universal use of algorithm with various family of PEG. 

Algorithm: 4 SPEG with avoidance of minimal trapping set: 

For t=1 to T do  

    For d=1 to 𝑑𝑚𝑎𝑥 do 

        For k=1 to d do 

For 𝑉𝑗 ∈ 𝒗𝑑
(𝑡)

 do 
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Determine𝑪𝒗𝒋 ∈ 𝐸 

If  

{ 

Det.distance:𝑑𝑐(i, j) = |𝑖 − 𝑗|𝑓𝑜𝑟 𝑖, 𝑗 ≤ 𝑛2 + 1 

Along the selectable survival path 𝑵𝑉𝑗
𝑙𝑚𝑎𝑥 

 

𝐶𝑖 ← {𝑪𝒗𝒋| mindeg} 

Add edge (𝑉𝑗,𝐶𝑗) to E 

} 

Else 

} 

Reject the survival path 𝑵𝑉𝑗
𝑙𝑚𝑎𝑥 

𝑵𝑉𝑗
𝑙𝑚𝑎𝑥 = 𝑵𝑉𝑗

𝑙𝑚𝑎𝑥 + 1 

} 

     End for 

      End for 

  End for 

End for 

 Algorithm: 4 (Anand&P.Senthil Kumar) degree-by-degree manner is scheduled 

progressive check node and variable node, but the elimination of trapping set from the small 

subset level will reduce the untraceable erasure when decoding process. Hence the 

combination of these two techniques together yields good error floor performance. Coming 

Simulation results in section 7supports the proposed work 

5. DENSITY EVOLUTION 

 Density evolution(DE) methods are used to find the threshold of the channel for 

an erased bit. It can be used in Binary Erasure channel (V. Savin, 2008) BEC and Binary 

input additive white Gaussian (BI-AWGN). The aim of DE to find the erasure probability of 

decoder which corrects the all erased bit. 

5.1Prosperities of Density Evolution (DE) 

(i) Symmetric distribution 

(ii) All-zeros codeword 

(iii) Concentration 

(iv) Cycle-free graph 
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 If the channel is symmetric then LLR output by iterative decoder is also 

symmetric. Due to the symmetric property, independent codeword is transmitted and 

modeledby all zero codeword. To choose high probability of random code for transmission 

will increase the ensemble average. If there is no cycle in tanner graph, then the messages are 

independent of density evolution. 

5.2Density Evolution on BEC 

 For MP in BEC the error bit can correlate only when the messages satisfy the 

parity check equation. 

 𝜀 = (1 − 𝑝𝑖)                 (9) 

 If there is probability of one more message then its probability:  

 𝑞𝑖 = 1 − (1 − 𝑝𝑖)
𝑤𝑟−1               (10) 

 𝑤𝑟 − 1is the edge of the check node 

 𝑤𝑟 &𝑤𝑐 is weight of variable and check node 

 𝑝𝑖=𝜀(𝑞𝑖 − 1)𝑤𝐶−1             (11) 

 𝑝𝑙= 𝜀(1 − (1 − 𝑝𝑙−1)𝑤𝑟−1)𝑤𝐶−1               (12) 

 

 Prior to decoding process the probability of erased bit 

 𝑃𝑜 =  𝜀                (13) 

 𝑃1 =  𝜀(𝑞𝑖 − 1)𝑤𝐶−1              (14)  

 Recursive equation finds the message from the erased bit on BEC. 

5.3Ensemble Threshold 

 For 𝜀 ∈ [0,1] then the lower bound 

 𝑓(0, 𝜀) = 𝜀𝜆(1 − 𝜌(1)              (15) 

Upper bound 

 𝑓(1, 𝜀) = 𝜀𝜆(1 − 𝜌(1 − 1) = 𝜀             (16) 

 0 ≤  𝑓(𝜌, 𝜀) ≤ 𝜀               (17) 
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 𝑃1(𝜀) → 0            then 

 𝑃1(𝜀′) → 0∀ 𝜀 <  𝜀′              (18) 

 The value of 𝜀 is called threshold. So (𝜆, 𝜌) can be represented as the supernum of 

𝜀 for with 𝑝𝑙(𝜀) → 0 

 𝜀∗(𝜆, 𝜌)= sup { 𝜀 ∈ [0,1]: 𝑝1𝑙→∞
(𝜀) → 0}               (19) 

 The equation (19) 𝜀∗ eliminate all the erased probability as zero. Threshold 

calculation of channel is one of the important tasks when designing the (𝜆, 𝜌 ) degree 

distribution of variable and check node. 

 

5.4Density Evolution on BI-AWGN 

 In BI-AWGN all LLR values are depending upon the probability density function 

(pdf), 

 𝑃(𝑀1) = 𝑃(𝑅) ⊗ ∑ 𝜆𝑖𝑖 𝑝(𝐸1)⊗(𝑖−1)            (20) 

 ⊗ Convolution operator 

 𝑧 = 𝑙𝑜𝑔
𝑓(𝑧)

𝑓(−𝑧)
        (21) 

 𝑓(𝑧) = ∬ 𝑓(𝑥, 𝑦)𝑑𝑥 𝑑𝑦              (22) 

 If 𝑃(𝐿
𝑥⁄ = −1) = 𝑃(− 𝐿

𝑥⁄ = 1)                     (23) 

 𝑃𝑐 = 𝑃(𝐿 < 0)               (24) 

 Equation (23) is used for condition 1 and equation (24) is used for condition zero 

with the distribution of LLR Vs Density is a Gaussian function with different variance values. 

 

6.EXIT CHART 

 Exit information transfer (EXIT) gives the visual interpretation of decoder with 

the help of mutual information of check node and variable node (Schmalen et al. 2011). This 

can give the information of decoder with in less number of iteration. 

EXIT chart can be used as 

(i) EXIT can find the threshold whenever the two curves link each other 
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(ii) It can find the speed of decoding process using the optimized (𝝀(𝒙), 𝝆(𝒙)) 

(iii) It can be used to generate the ensemble for capacity approaching code. 

7 RESULTS AND DISCUSSION 

 Figure 2 shows that IEEE 802.11 recent exponential non-binary matrix is 

developed and this matrix is used as the seed matrix of regular  

quasi-cyclic LDPC code with the each entry corresponding to 27. 

 Code rate =2/3 

 Code word length= 608 

 Circulant matrix size =27. 

 

Figure 2 802.11-2012 exponential H matrix 

 

Figure 3 Non-binary PEG Seed matrix size of (150, 78) with the girth of 8 
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 The Non-binary seed matrix PEG is shown in Figure 3 non-binary values are 

connected as most as 15 number and this irregular non-binary matrix obtained when the 35 th 

bit node is progressive. The non-zero entries are shown a mesh command in MATLAB. 

 

Figure 4 Binary irregular LDPC H matrix by PEG (524,1000) 

 To differentiate the regular and irregular binary and non-binary Figure 4 shows 

that the irregular PEG with input codeword size is as 500. The girth of the encoder matrix is 5 

only. So, the Non-zero elements are distributed randomly. This encoder matrix illustrates the 

sparseness of the matrix in the after column of 250 onwards. It gives the information of 

increasing the matrix size distribution of non-zero which will be sparse. 

 

Figure 5 Encoder seed matrix of PEG with Girth of 8 (100,150) 
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 The PEG LDPC encoder matrix with a girth of 8 is simulated and plotted with the 

size of (100,50) this is starting seed matrix of the PEG at the 50 th node connection 

progressive finished, and it is grown progressively with the node by node basis upto 

(560,1000) as in IEEE standard 802.11-2012 standard. The Figure 5 gives the construction of 

LDPC PEG with a girth of illustrating the layer performance in Encoder matrix. The 

corresponding H matrix also is shown in Figure 6. 

 

Figure 6 H matrix of PEG with girth of 8 (100,50) 

 

Figure 7 regular QCLDPC by improved PEG (500,1000) 

 Figure 7 shows that regular PEG LDPC size(500,1000) with the girth of 8 is 

completed with the full size. The complete matrix has less number of one’s near to zero, is 

illustrated. Only 648 non-zero values are there in the construction which is shown in Figure 

8. The main reduction of non-zero values by ACE LDPC encoder (improved PEGLDPC) is 

also shown here.  
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Figure 8 Spy representation of improved PEGLDPC (500, 1000) 

 Channel asymptotic behaviour can be calculated by density evolution technology. 

DE is used to calculate the probability of error by MATLAB and the result is shown. 

 chan = zeros(1,6001); 

 chan(3240) = 91.606; 

 chan(2762) = 8.394; 

 ext = [-30 0.01 6001]; 

 mapping = [-10 0.0002 50000]; 

 dv = 3; 

 dc = 6; 

 iter = 50; 

 stop_pe = 1e-5; 

result of probability error is tabulated corresponding to the iteration. 

 

Table 1 Density evolution analysis 

Degree 

distribution 
Threshold Itertion10 

Iteration 

20 

Iteration 

30 

Iteration 

40 

Iteration 

50 

Variable node 

degree 

[0 0.2895    

0.3158 0 0  

0.3947] 

Check node 

degree 

0. 023 0.0839 0.0788 0.0792 0.0796 0.0845 

0.45 0.0631 0.0580 0.0543 0.0520 0.0592 
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[0 0 0 0 0 0.9032  

0.0968] 

 

 The degree of distribution of check node and the variable node from the IEEE 

802.11-2012 taken into account for calculating threshold of the channel. The threshold value 

of the channel is the information capacity to the upper bound. But the value of probability 

error is not converging even when the number of iteration is increased. So it is clear that the 

threshold value and probability of error depend up on degree of distribution of irregular code 

check node and variable node. The Density evolution with a posteriori probability will not 

give a good result for the specific encoding process. This is shown in Table 1 from density 

evaluation analysis the threshold value is calculated form different iteration. But a priori 

probability is required information before transmission in many iterative decoding 

algorithms. So, EXIT (Extrinsic information) of check node, and EXIT chart also give the 

information of channel threshold by using Intrinsic and Extrinsic information calculation with 

the logarithmic domain and this will show the clear boundary of channel threshold, 

 
 

Figure 9 Exit chart for binary LDPC 

 EXIT chart in Figure 9 gives the information of channel threshold as 0.768 for the 

BER of 10^-2. This simulation is for codeword length as 500. If we increase the 

codewordlength upto 1000, it will not take a tremendous changes in the channel threshold 

values. So, the effect of codeword length is not that much an issues in channel threshold.  

 So, even the short length also has the same performance as large codeword length. 

Hence, reducing the codewordlength is not the influence the threshold. From the analysis 

channel threshold, it is depending upon the probability in density evolution, but in EXIT chart 
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the value of threshold mainly depends upon the Extrinsic and Intrinsic information of check 

node and a variable node of this system in logarithm domain. 

The EXIT chart values are tabulated in Table 1 is shown as NBLDPC extrinsic 

information transfer for the codeword length as 500 with 11th order polynomial to get 

better understanding of bit/channel use and the illustration is also shown in Figure 9.  

 

CONCLUSION: 

 

The PEG encoder are already achieve good performance and its produce near to channel 

capacity. The EXIT chart analysis is supporting that the PEG and SPEG are fast in 

convergence for short length codes. This because the PEG ensembles are obtained from 

density evolutions. The behaviour of SPEG encoder is attributed by the trapping set 

elimination algorithm is added advantage to the encoding process and eliminate infinite loop 

when it will be decoded. So the SPEG encoder with trapping set elimination process leads 

good in encoder performance. 
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Performance analysis of short length Low density parity 

check codes 

 

 

Figure 1 An irregular LDPC code 

 

 

Figure 2 802.11-2012 exponential H matrix 
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Figure 3 Non-binary PEG Seed matrix size of (150, 78) with the girth of 8 

 

Figure 4 Binary irregular LDPC H matrix by PEG (524,1000) 



 

Figure 5 Encoder seed matrix of PEG with Girth of 8 (100,150) 

 

Figure 6 H matrix of PEG with girth of 8 (100,50) 



 

Figure 7 regular QCLDPC by improved PEG (500,1000) 

 

Figure 8 Spy representation of improved PEGLDPC (500, 1000) 



 
 

Figure 9 Exit chart for binary LDPC 
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Table 1 Density evolution analysis 

Degree 

distribution 
Threshold Itertion10 

Iteration 

20 

Iteration 

30 

Iteration 

40 

Iteration 

50 

Variable node 

degree 

[0 0.2895    

0.3158 0 0  

0.3947] 

Check node 

degree 

[0 0 0 0 0 0.9032  

0.0968] 

0. 023 0.0839 0.0788 0.0792 0.0796 0.0845 

0.45 0.0631 0.0580 0.0543 0.0520 0.0592 
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